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INTRODUCTION 

     Periodontal-ligament stem cells (PDLSCs) are 

widely recognized as a promising cell source for 
regenerating the tooth–root interface and periodontal 

tissues1-4. However, translating in vitro PDLSC 

screening results into predictable in vivo 
cementogenesis outcomes has been challenging. Key 

hindrances include: 

 

 

• Multi-factorial cues: Cementogenic differentiation is 

driven by many interacting molecular and 

microenvironmental factors, complicating modeling. 

 • Small sample sizes: Preclinical and in vitro studies often 
have limited samples, making statistical inference 

difficult and overfitting likely.  
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Background:Cementum regeneration remains a major challenge in functional periodontal repair. Traditional 

computational models often rely on large deep-learning architectures that provide point estimates but limited 

information on prediction confidence. 

Objectives:To develop a compact Bayesian neural network (BNN) capable of predicting cementum thickness with 

high accuracy and well-calibrated uncertainty, while remaining computationally efficient for laptop-class hardware. 

Results:Using a 30-feature, 500-sample synthetic dataset representing gene/protein signatures and scaffold 
descriptors, the BNN achieved a root-mean-square error (RMSE) of 0.54 mm and explained approximately 77% of 

outcome variance. The model also provided interpretable posterior intervals, offering a measure of prediction 

confidence. The workflow is hardware-light, reproducible, and directly applicable to wet-lab datasets. 

Conclusion:The proposed BNN framework enables accurate, uncertainty-aware cementum thickness predictions on 
standard hardware, facilitating reproducible and translational computational modeling for periodontal regeneration 

research. 
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• Lack of uncertainty estimates: Many machine-

learning models (e.g., neural networks, ensemble 
methods) give point predictions as ground truth, 

ignoring biological noise in PDLSC differentiation 

and leaving no confidence margins for prioritizing 

growth factors or scaffold chemistries5. 

Current advanced models (e.g., convolutional neural 

networks or gradient-boosted ensembles) can forecast 

mineralized tissue volume or other outcomes, but they 
typically do so in a “black-box” deterministic 

manner6.The unpredictable nature of such models 

outside their training domain, combined with absence 

of predictive confidence, has impeded their clinical 
adoption. In periodontal engineering, true 

regeneration of the complex bone–PDL–cementum 

interface remains difficult to achieve in practice, and 
cementum formation in particular is often the weakest 

link in achieving functional regeneration. There is thus 

a knowledge gap: researchers lack computational tools 

that not only capture the latent biology of PDLSC-
driven cementum regeneration but also quantify the 

uncertainty in those predictions.In this work, we ask 

whether a minimal BNN can be used to model 
PDLSC-driven cementum regeneration and 

simultaneously provide statistically grounded 

uncertainty estimates for its predictions, using only 
standard computing resources7.By doing so, we aim to 

bridge the gap between complex biological variability 

and decision-making, helping tissue engineers design 

more efficient and risk-aware experiments. 

MATERIALS AND METHODS 

2.1 Dataset 

We generated a 500-sample in silico dataset to emulate 
a typical PDLSC screening experiment. Each sample 

consisted of 30 numeric features intended to represent 

key gene expression levels, protein markers, or 

scaffold material properties relevant to the process of 
cementogenesis. The simulation procedure (detailed in 

the Supplementary Script) assigned each sample a 

target value cementum_mm, corresponding to the 
thickness of regenerated cementum (in millimeters). 

Briefly, a ground-truth function combining several 

features (with nonlinear interaction terms) was used to 
compute an ideal cementum thickness, to which we 

added random noise to simulate biological and 

measurement variabilityThe feature values were 

randomized across samples to reflect diverse 
experimental conditions. This synthetic data approach 

enabled the generation of a known “true” outcome 

variance, to which the BNN’s performance could be 
compared. All data were saved in a CSV file format 

for reproducibility. 

 

2.2 Pre-processing 

Before modeling, all features were standardized to zero-

mean and unit-variance using scikit-learn’s 
StandardScaler. This scaling ensured that features on 

different numeric scales (e.g., gene expression units vs. 

scaffold porosity percentages) were comparable. Next, we 
applied principal component analysis (PCA) to reduce the 

dimensionality from 30 original features to 15 principal 

components, which together retained approximately 93% 
of the variance. The PCA was fitted on the training 

portion of the data (see below) and then applied to 

transform both training and validation sets. By 

compressing the feature space, PCA mitigated 
multicollinearity and noise, allowing the BNN to learn 

more stable patterns from a smaller number of orthogonal 

inputs10. 

2.3 Bayesian neural network 

Architecture: We implemented a single-hidden-layer 
Bayesian neural network with 15 inputs (the PCA 

features) feeding into one hidden layer of 32 ReLU-

activated units, and a single linear output neuron for 

predicting cementum_mm. Despite its simplicity, this 
architecture has enough capacity to capture nonlinear 

relationships in the data while remaining “lightweight” 

for fast training on a CPU. 

Priors: We placed independent zero-mean unit-variance 
normal priors on all weights and biases of the network. 

This reflects an initial belief that the parameters are likely 

to be near zero, but with no strong prior preference for any 

particular weight. The model included an explicit 
observation noise term σ (standard deviation of the 

output), for which we used a LogNormal(μ=0, σ=0.1) 

prior. This prior is weakly informative, centered near 
$\sigma\approx1$ (since $e^0=1$) with a relatively tight 

spread, reflecting the expectation that the measurement 

noise is positive and not excessively large. The inclusion 

of an observation noise parameter allows the BNN to 
account for irreducible noise in the cementum outcome, 

distinguishing it from uncertainty due to limited data or 

model parameters. 

Inference: We performed variational Bayesian inference 
using stochastic variational inference (SVI) as 

implemented in the Pyro probabilistic programming 

framework. In SVI, the goal is to approximate the true 
posterior $p(W,\sigma,| \text{data})$ with a simpler 

variational distribution. We chose a mean-field Gaussian 

variational family (i.e., each weight’s posterior 

approximated by an independent normal). Although this 
mean-field assumption ignores posterior correlations, it 

greatly simplifies optimization and was sufficient for our 

needs. Pyro’s AutoDiagonalNormal guide was used to  
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create variational parameters for all weight and bias 

posteriors automatically. We optimized the variational 
parameters by minimizing the negative evidence lower 

bound (ELBO), equivalently maximizing the ELBO, 

via the Adam optimizer (learning rate 0.01). We ran 
SVI for 800 steps (with mini-batches of 32 samples), 

which was empirically enough for convergence (see 

Results). Each SVI step drew a random mini-batch and 
a noise sample for the weights, and computed a 

gradient estimate of the ELBO to update the 

variational parameters. The entire training procedure 

was implemented in Python 3.11 using PyTorch 2.2 
and Pyro PPL 1.9. On a standard laptop CPU, training 

completed in under one minute of wall-clock time, 

highlighting the pipeline’s hardware efficiency. 

Software: Key libraries used were PyTorch (for neural 
network operations), Pyro probabilistic programming 

language (for Bayesian inference), and scikit-learn 

(for PCA and scaling). All code was executed in a 

Jupyter/Python environment; random seeds were fixed 

where appropriate to ensure reproduce bility. 

 

2.4 Evaluation metrics 

We split the dataset into 80% training (400 samples) and 

20% validation (100 samples). Model performance was 
evaluated on the validation set using three metrics: (1) 

RMSE – the standard deviation of errors, representing 

average prediction error in millimeters; (2) R² – the 
variance in cementum thickness explained by predictions; 

and (3) 95% credible-interval coverage – the percentage 

of true values within the model’s 95% posterior interval. 
Calibration was checked by sampling 1,000 network 

weights, generating predictions, and calculating the 

percentage of targets within their intervals. Residuals 

were also analyzed for bias or heteroscedasticity. All 

results are based on unseen validation data. 

RESULTS 

3.1 Convergence 

 

 

  

       
Figure 1. Negative ELBO decreased sharply in the first ~200 steps and then flattened out by step ~800, indicating stable 

convergence without over-fitting.\ 

                          3.2 Predictive accuracy and calibration 

 

Figure 2. shows the Scatter plot of true versus predicted cementum thickness for validation samples, with 95% credible 

intervals on the predictions. Most intervals cross the 45° identity line, confirming that the model’s predictive uncertainty 

is well-calibrated. The few points whose intervals do not include the line correspond to the largest prediction errors.) 
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3.3 Residual distribution 

 

Figure 3. shows the Residuals (prediction errors) are centered at zero and approximately symmetric, suggesting no 
systematic bias across the prediction range. The spread of residuals is fairly tight, supporting the model’s 

homoscedasticity assumption and indicating well-behaved prediction errors.) 

Metric Value 

RMSE (mm) 0.54 

R² (fraction of variance) 0.77 

95% CI coverage (expected 95%) ~94% 

Table 1. Performance metrics on the 100-sample validation set. The Bayesian neural network achieved an RMSE of 
0.54 mm and an $R^2$ of 0.77, indicating good predictive accuracy. Together with a 94% credible interval coverage 

(for a nominal 95% confidence level), these results suggest that the model is both accurate and well-calibrated in its 

uncertainty estimates. 

DISCUSSION 

4.1 Biological interpretation 

The compact BNN was able to capture more than 75% 

of the variance in cementogenesis outcomes, despite 

using only 15 principal components and a single 
hidden layer. This suggests that, within the synthetic 

dataset (designed to mimic real PDLSC behavior), the 

key predictive signals were effectively learned. 
Biologically, this implies that a relatively low-

dimensional combination of factors (e.g., principal 

components of gene expression and scaffold 
properties) can account for a significant portion of the 

variability in regenerated cementum thickness. The 

model’s uncertainty estimates appear to correspond to 

real experimental noise rather than mere model 
ignorance. The average predicted credible interval was 

±0.30 mm, which closely matched the noise level we 

intentionally added to the synthetic data 
(approximately 0.3 mm of simulated biological noise). 

In practice, this means the BNN’s posterior predictive 

distribution was well-tuned to the true outcome 
variability – it “knows what it doesn’t know.” For a 

wet-lab scientist, an interval of ±0.3 mm around a 

predicted thickness provides a tangible sense of the 

variability to expect due to inherent biological factors. 
This is valuable for experimental design: for instance, if 

two growth factor treatments differ in predicted 

cementum yield by 0.2 mm, but each prediction has 

±0.3 mm uncertainty, the overlap suggests their outcomes 
might not be significantly different when tested in vivo. 

The BNN thus offers not just point estimates but 

actionable insight into the confidence of those estimates, 

bridging a critical gap left by traditional models11,12. 

From a biological perspective, our findings reinforce that 

PDLSC-mediated regeneration is a multifactorial process 

but one that can be quantified with the right computational 
approach. The success of the BNN (and PCA 

preprocessing) indicates that, while dozens of genes and 

signals are involved, their effects may be distilled into a 

few composite drivers of cementum formation. This 
aligns with the understanding that certain pathways (e.g., 

osteogenic and cementogenic signaling cascades) 

dominate the outcome (fig-1,2,3) (table-1). The BNN 
essentially inferred those latent drivers from data(13,14). 

Moreover, the model’s lack of systematic bias (zero-

centered residuals) suggests that it did not consistently 

miss any particular biological effect in the simulation. For 
example, it did not always underpredict high cementum 

yields or overpredict low yields, which gives confidence  
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that the major factors were accounted for. 

The proposed Bayesian framework offers several 

practical advantages for biomedical researchers and 
tissue engineers. It is laptop-friendly, allowing the 

entire analysis—from data preprocessing to model 

training and prediction—to be completed in under a 
minute on a standard laptop CPU, eliminating the need 

for specialized hardware like GPUs or clusters and 

enabling quick iteration and integration into laboratory 
data pipelines. Its uncertainty-awareness provides a 

quantified measure of confidence for each prediction, 

facilitating more informed decision-making, such as 

selecting scaffolds or growth factors based not only on 
predicted outcomes but also on the reliability of those 

predictions. Moreover, the framework is highly 

extensible, capable of being adapted to real datasets 
with minimal adjustments thanks to its modular design 

and reliance on generic mechanisms like Pyro’s 

automated guide and PyTorch’s neural networks; it 

supports modifications such as adding layers or 
changing activation functions while maintaining 

uncertainty quantification. Reproducibility is also 

emphasized, as scripts can be shared with fixed 
random seeds to allow others to replicate results or 

build upon the model9-15.However, it’s important to 

note that the model was developed using synthetic 
data, and applying it to real biological data may 

introduce complexities such as batch effects, noise, or 

outliers that require additional validation and 

preprocessing solutions like batch normalization or 
robust scaling. Although Bayesian models are well-

suited to handle some of these issues, careful 

validation remains essential to ensure accurate and 
reliable results in practical settings.e. Another 

limitation lies in the variational inference approach we 

used. The mean-field variational Bayes assumption 

(treating each weight’s posterior independently) is 
computationally efficient. Still, it is known to 

underestimate posterior covariances and can thus mis-

calibrate uncertainties in certain cases. In other words, 
our credible intervals might be slightly narrower than 

they would be under an exact Bayesian posterior, 

especially if there are strong correlations between 
model parameters that mean-field couldn’t capture. 

This issue is common to many variational Bayes 

implementations: they achieve speed at the cost of a 

simplified posterior. In our results, the uncertainty 
calibration was quite good (94% coverage for 95% 

intervals), indicating that any such underestimation 

was minor in this scenario. However, for more 
complex models or smaller datasets, the limitation 

could be more pronounced. Future work could address 

this by using more expressive variational families – for 

example, normalizing flow-based posteriors that can  

 

capture correlations, or ensemble methods to approximate 

a full posterior. Markov Chain Monte Carlo (MCMC) can 
also be employed for gold-standard posterior sampling, 

although at a significantly higher computational cost9-15. 

Finally, our BNN currently assumes a constant 
observation noise $\sigma$ across all samples 

(homoscedasticity). If, in reality, some conditions yield 

more variable outcomes than others (heteroscedasticity – 
e.g., perhaps regeneration on certain scaffold types is 

inherently more unpredictable), our model would not 

capture that nuance. In future extensions, one could allow 

the network to output both a mean and a variance for each 
prediction (learning a function $\sigma(x)$) or use a 

mixture-of-experts model to accommodate different noise 

levels. This would increase model complexity but could 
further align the uncertainty estimates with biological 

reality. 

Despite these limitations, we believe they are addressable. 

The overall modeling framework is flexible – one can 

refine priors, incorporate additional domain knowledge 
(e.g., constrain certain weights to be non-negative if a 

feature is known to have only a positive effect), or expand 

the network as needed. The encouraging performance on 
synthetic data is a first step, and ongoing work will focus 

on applying this approach to experimental datasets from 

PDLSC studies to test its real-world applicability. 

CONCLUSION 

We have demonstrated a streamlined Bayesian neural 

network pipeline that can predict PDLSC-driven 
cementum regeneration outcomes while also providing 

meaningful uncertainty bounds. This approach directly 

addresses the knowledge gap of “black-box” predictions 
in tissue engineering by quantifying confidence alongside 

the prediction. In doing so, it empowers researchers to 

make risk-aware decisions – for example, selecting a 
growth factor treatment that not only maximizes expected 

cementum thickness but also has a high certainty of 

success. The entire framework is lightweight and 

accessible, running on consumer-grade hardware and 
built with open-source tools, which facilitates immediate 

adoption by the community. Our BNN model serves as a 

decision-support tool in planning regenerative 
experiments by forecasting outcomes and their 

probabilities based on candidate biomaterials and 

conditions. Its Bayesian framework allows iterative 

learning through updates with new data, enhancing 
prediction accuracy and reducing uncertainty. Future 

plans include applying this to real PDLSC datasets for 

validation, extending to related tissues, and integrating 
into an active learning loop. This approach promotes a 

new paradigm of predictive, uncertainty-aware tissue 

engineering, combining computational models with 

experiments for faster discovery. 
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